Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Clinical and Experimental Vaccine Research ; : 95-103, 2017.
Article in English | WPRIM | ID: wpr-184076

ABSTRACT

Outbreaks of H5 highly pathogenic avian influenza viruses (HPAIVs) have caused economic loss for the poultry industry and posed a threat to public health. In South Korea, novel reassortants of HPAIVs such as H5N6 and H5N8 had been circulating in poultry. Here, we will discuss the identity of recent novel reassortants of Korean H5 HPAIVs and the recent advances in vaccine development, which will be useful for controlling HPAIV transmission in poultry and for effectively preventing future epidemics and pandemics.


Subject(s)
Animals , Disease Outbreaks , Epidemiology , Influenza in Birds , Korea , Pandemics , Poultry , Public Health , Vaccines
2.
Journal of Veterinary Science ; : 253-256, 2017.
Article in English | WPRIM | ID: wpr-109772

ABSTRACT

There are high levels of co-incidence of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) in porcine tissue. This study established a duplex nested reverse transcriptase polymerase chain reaction (RT-PCR) method that targets the genomic RNA of type 2 PRRSV and the mRNA of PCV2 in infected tissues. The method amplified discriminative bands of 347 bp and 265 bp specific for type 2 PRRSV and PCV2, respectively. The limits of detection of the duplex nested RT-PCR were 10(1.5) TCID₅₀/mL for type 2 PRRSV and 10² infected cells/mL for PCV2. The kappa statistic, which measures agreement between methods, was 0.867, indicating a good level of agreement. This RNA-based duplex RT-PCR approach can be another way to detect type 2 PRRSV and PCV2 simultaneously and with improved convenience.


Subject(s)
Circovirus , Limit of Detection , Methods , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Reverse Transcriptase Polymerase Chain Reaction , RNA , RNA, Messenger , RNA-Directed DNA Polymerase
3.
Korean Journal of Veterinary Research ; : 7-14, 2011.
Article in English | WPRIM | ID: wpr-38065

ABSTRACT

This study was focused on the genotyping and quantification of Porcine circovirus type 2 (PCV2) in thirty PCV2-positive pigs with different clinical symptoms (PCV2-infected without wasting, PCV2-infected with wasting, PCV2-infected with wasting and lymphoid depletion). The quantity of PCV2 DNA in diverse tissues was significantly differed among these groups. (One-way ANOVA test, p < 0.001) Interestingly, PCV2-DNA load in tissues of PCV2-infected pigs without wasting and PCV2-infected pigs with wasting and lymphoid depletion were not significantly differed (p = 0.38), while they were all significantly higher when compared with PCV2-infected pigs with wasting-only. PCV2 DNA quantity in tissues was significantly higher in PCV2a and 2b co-infected pigs compared to the PCV2b only-infected pigs (Wilcoxon test, p = 0.039). The PCV2a and 2b co-infected pigs had increased wasting and lymphoid depletion rate but it was not statistically significant. Therefore, this cross-sectional study suggested that PCV2 DNA load in tissues was diverse by clinical and histological findings. Furthermore, co-infection of PCV2a and 2b affected to the PCV2 DNA load in tissues with increased rate of wasting and lymphoid depletion.


Subject(s)
Circovirus , Coinfection , Cross-Sectional Studies , DNA , Genotype , Swine
4.
Korean Journal of Veterinary Research ; : 129-137, 2011.
Article in English | WPRIM | ID: wpr-159635

ABSTRACT

Swine diseases could be caused by unrecognized or minor pathogens. In this study, two unknown cytopathogenic agents were isolated from swine, through cell culture. In order to identify these two cytopathogenic agent (designated CP129 and #2045-7), a particle associated nucleic acids PCR (PAN-PCR) from previous paper was used with simple modification. The cloning procedure was more specified in this study by adding cell control system. According to the modified PAN-PCR, two and four agents-specific DNA sequences were obtained from CP129 and #2045-7, respectively, and they were identified as Mycoplasma (M.) hyorhinis and Mammalian orthoreovirus by nucleotide BLAST. Since M. hyorhinis (CP129) was filterable and non-visible by microscope, this unusual virus-like nature of M. hyorhinis (CP129) was discussed. Especially, the reovirus (#2045-7) was a serotype 3 and a triple reassortant among three serotypes of reoviruses. It was grouped with recently reported reoviruses from disease cases (swine, human and feline), based on the genetic analysis of L1 and S1 partial sequences. In conclusion, two unknown cytopathogenic agents were successfully identified using modified PAN-PCR with cell control system and they were characterized in this study.


Subject(s)
Humans , Base Sequence , Cell Culture Techniques , Clone Cells , Cloning, Organism , Mammalian orthoreovirus 3 , Mycoplasma , Mycoplasma hyorhinis , Nucleic Acids , Orthoreovirus, Mammalian , Polymerase Chain Reaction , Swine , Swine Diseases
5.
Journal of Veterinary Science ; : 269-271, 2010.
Article in English | WPRIM | ID: wpr-79610

ABSTRACT

The purpose of this study was to develop a multiplex PCR that can detect porcine endogenous retrovirus (PERV) proviral genes (pol, envA, envB, envC) and porcine mitochondrial DNA, using a dual priming oligonucleotide (DPO) system. The primer specifically detected the PERV proviral genes pol, envA, envB, envC, and porcine mitochondrial DNA only in samples of pig origin. The sensitivity of the primer was demonstrated by simultaneous amplification of all 5 target genes in as little as 10 pg of pig DNA containing PERV proviral genes and mitochondrial DNA. The multiplex PCR, when applied to field samples, simultaneously and successfully amplified PERV proviral genes from liver, blood and hair root samples. Thus, the multiplex PCR developed in the current study using DPO-based primers is a rapid, sensitive and specific assay for the detection and subtyping of PERV proviral genes.


Subject(s)
Animals , DNA Primers/genetics , DNA, Mitochondrial/genetics , Gammaretrovirus/genetics , Polymerase Chain Reaction/methods , Proviruses/classification , Sensitivity and Specificity , Sus scrofa/genetics
6.
Journal of Veterinary Science ; : 121-130, 2009.
Article in English | WPRIM | ID: wpr-221145

ABSTRACT

The 23 open reading frame (ORF) 5 sequences of Korean type II porcine reproductive and respiratory syndrome virus (PRRSV) were collected from viremic sera from the (modified live vaccine) MLV-vaccinating and non-vaccinating farms from 2007 to 2008. The samples were phylogenetically analyzed with previous ORF5 sequences, including type I Korean PRRSV, and previously reported or collected sequences from 1997 to 2008. A MN184-like subgroup of type II Korean PRRSV was newly identified in the viremic sera collected from 2007 to 2008. And of the type I PRRSVs, one subgroup had 87.2~88.9% similarity with the Lelystad virus, showing a close relationship with the 27~2003 strain of Spain. The maximum parsimony tree of type II PRRSV from 1997 to 2008 showed that they had evolved to four lineages, subgroups 1, 2, 3 and 4. Most of the recently collected type II PRRSVs belonged to subgroup 4 (48%). The region of three B-cell epitopes and two T-cell epitopes of ORF5 amino acids sequences was considerably different from the MLV in subgroups 3 and 4. In conclusion, the existence of type I PRRSV, which was genetically different from Lelystad virus (Prototype of type I PRRSV), and heterologous type II PRRSVs of viremic pigs detected even in the MLV-vaccinating farms indicated the need for new vaccine approaches for the control of PRRSV in Korea.


Subject(s)
Animals , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Evolution, Molecular , Korea , Open Reading Frames , Phylogeny , Pilot Projects , Porcine Reproductive and Respiratory Syndrome/blood , Porcine respiratory and reproductive syndrome virus/genetics , RNA, Viral/chemistry , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Swine , Viral Vaccines/immunology , Viremia/genetics
7.
Journal of Veterinary Science ; : 317-322, 2009.
Article in English | WPRIM | ID: wpr-67603

ABSTRACT

Porcine endogenous retroviruses (PERVs) are members of family Retroviridae, genus Gamma retrovirus, and transmitted by both horizontally and vertically like other endogenous retroviruses (ERVs). PERV was initially described in the 1970s having inserted its gene in the host genome of different pig breeds, and three classes, PERV-A, PERV-B, and PERV-C are known. The therapeutic use of living cells, tissues, and organs from animals called xenotransplantation might relieve the limited supply of allografts in the treatment of organ dysfunction. Because of ethical considerations, compatible organ sizes, and physiology, the pig has been regarded as an alternative source for xenotransplantation. Sensitive duplex reverse transcription-polymerase chain reaction protocols for simultaneously detecting PERV gag mRNA and porcine glyceraldehydes 3-phosphate dehydrogenase mRNA in one tube was established. To compare the age-related PERV expression patterns of the lung, liver, spleen, kidney, heart, and pancreas in commercial pigs, 20 pigs from four age groups (5 heads each in 10 days-, 40 days-, 70 days-, and 110 days-old, respectively) were used in this study. The expression patterns of PERV were statistically different among age groups in lung, liver, and kidney (ANOVA, p<0.05). These data may support in the selection of appropriate donor pigs expressing low levels of PERV mRNA.


Subject(s)
Animals , Endogenous Retroviruses/metabolism , Gene Expression Regulation, Viral/physiology , RNA, Messenger/genetics , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Sensitivity and Specificity , Swine/virology
8.
Journal of Veterinary Science ; : 323-329, 2009.
Article in English | WPRIM | ID: wpr-67602

ABSTRACT

Active serologic surveillance is necessary to control the spread of the avian influenza virus (AIV). In this study, we evaluated a commercially-available cELISA in terms of its ability to detect AIV antibodies in the sera of 3,358 animals from twelve species. cELISA detected antibodies against reference H1- through H15-subtype AIV strains without cross reactivity. Furthermore, the cELISA was able to detect antibodies produced following a challenge of the AIV H9N2 subtype in chickens, or following vaccination of the AIV H9 or H5 subtypes in chickens, ducks and geese. Next, we tested the sensitivity and specificity of the cELISA with sera from twelve different animal species, and compared these results with those obtained by the hemagglutination-inhibition (HI) test, the "gold standard" in AIV sera surveillance, a second commercially-available cELISA (IZS ELISA), or the agar gel precipitation (AGP) test. Compared with the HI test, the sensitivities and specificities of cELISA were 95% and 96% in chicken, 86% and 88% in duck, 97% and 100% in turkey, 100% and 87% in goose, and 91% and 97% in swine, respectively. The sensitivities and specificities of the cELISA in this study were higher than those of IZS ELISA for the duck, turkey, goose, and grey partridge sera samples. The results of AGP test against duck and turkey sera also showed significant correlation with the results of cELISA (R-value >0.9). In terms of flock sensitivity, the cELISA correlated better with the HI test than with commercially-available indirect ELISAs, with 100% flock sensitivity.


Subject(s)
Animals , Antibodies, Viral/blood , Birds , Enzyme-Linked Immunosorbent Assay/methods , Horses , Influenza A virus/immunology , Influenza Vaccines/immunology , Influenza in Birds/blood , Sensitivity and Specificity , Serologic Tests , Species Specificity , Swine
SELECTION OF CITATIONS
SEARCH DETAIL